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ABSTRACT
With the blossoming of social networking platforms like Twitter
and Facebook, how to infer the opinions of online social network
users on specific topics they had not directly given yet, has received
much attention. Existing solutions mainly rely on one’s previous
posted messages. However, recent studies show that over 40% of
users opt to be silent all or most of the time and post very few
messages. Consequently, the performance of existing solutions will
drop dramatically when they are applied to infer silent users’ opin-
ions, and how to infer the opinions of these silent users becomes a
meaningful while challenging task. Inspired by the collaborative
filtering techniques in cold-start recommendations, we infer the
opinions of silent users by leveraging the text content posted by
active users and their relationships between silent users. Specif-
ically, we first consider both observed and pseudo relationships
among users, and cluster users into communities in order to extract
various kinds of features for opinion inference. We then design a
coupled sparse matrix factorization (CSMF) model to capture the
complex relations among these features. Extensive experiments on
real-world data from Twitter show that our CSMF model achieves
over 80% accuracy for the inference of silent users’ opinions.
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1 INTRODUCTION
Recent years have witnessed a booming development of online
social networking platforms like Twitter and Facebook. In online
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social networks, even active users will not publish messages to
directly show their opinions towards all topics. As a result, inferring
users’ opinions on specific topics they had not directly given yet,
has attracted increasing attention [11, 13, 26]. When inferring a
user’s opinion on a specific topic, existing solutions generally are
based on his/her previous posted messages on other topics, in order
to profile himself/herself [7] or find his/her neighbors with similar
user personal interests [9, 17, 30]. For example, [7] extracted two
types of features from a user’s posted content about other topics
to tell if the user has certain opinion bias on all topics (i.e., some
users are more likely to be positive or negative). Then the user’s
opinion on a specific topic can be correlated with or similar as
his/her opinions on some other topics.

However, recent work on social science [6, 10, 22] has shown
that a significant proportion (over 40%) of users choose to be silent
all or most of the time, and seldom publish messages to express their
opinions towards various topics. Having a better understanding
of these silent users’ opinions is important, as it greatly helps us
to avoid misjudgement of overall population-level opinions, and
advances a variety of real-world applications, such as targeted
advertising [5, 14] and political election predictions [8]. Inferring
the opinions of silent users is a quite challenging task. As silent
users do not generate sufficient content, existing solutions which
rely on one’s historical posted messages often only focus on users
who have historical messages, but ignore these silent users who
do not post anything in a long period time. The performance of
existing solutions will drop dramatically when they are used to
predict the opinions of silent users [7, 17]. Different from existing
work on opinion inference, we take a step towards the inference of
silent users’ opinions in this paper.

We find that inferring silent users’ opinions is intrinsically sim-
ilar to cold-start recommendation problem, whose objective is to
predict rating scores for specific items rated by new users without
any historical preference information. In recommendation systems,
users tend to have similar tastes with their friends. As a result,
rating scores of new users can be predicted by considering the
preference information of their friends in social networks [16, 19].
Similarly, existing studies on social science theories have verified
that users that are connected (become friends) are prone to ex-
hibit similar opinions on a certain topic [2, 3, 18]. Therefore, we
argue that we can infer silent users’ opinions by leveraging the text
content generated by active users and their relationships between
silent users.

However, applying the methods designed for cold-start recom-
mendations to infer silent users’ opinions still entails many chal-
lenges due to the following reasons. 1) Diversity of user-user re-
lations: Existing studies [4, 24] on social science have found that
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observed relationships (i.e., the follower/followee network struc-
ture) are only one type of user-user relations, while other types
of user-user relations are also very important for shared opinions
among users. 2) Heterogeneous fusion: Many features need to be
consideredwhen characterizing silent users and inferring their opin-
ions, including structural features of the user-relationship network,
opinion information of text content, users’ interests, etc. Simultane-
ously considering all these features extracted from heterogeneous
sources is quite difficult.

To address the aforementioned issues, the inference of silent
users’ opinions is modeled as a matrix factorization problem in
this work, and a coupled sparse matrix factorization (CSMF) model
is proposed to fuse text content data and user-relationship data
for accurate inference. The main contributions of this paper are
summarized as follows:

• To extract features of silent users, we first infer user-user
relations and cluster users into communities. Then three sets
of features are extracted for each user.
• A coupled sparse matrix factorization (CSMF) model is pro-
posed to capture the complex relations among various fea-
tures and infer silent users’ opinions.
• We validate the effectiveness of our CSMF model based on
real-world dataset from Twitter. Experimental results demon-
strate that our model can be effectively used to infer silent
users’ opinions.

2 DATA DESCRIPTION
In this paper, Twitter is employed as the basis for our opinion infer-
ence experiments. The Twitter data we used consists of over 70, 000
messages on 20 hot political topics and the follower/followee net-
work structure among over 6, 000 users. For each Twitter message,
it is assigned an opinion label: −1 (negative), 0 (neutral) or +1 (pos-
itive). We employ 20 people to manually assign an opinion label
for each message. In this paper, we restrict our attention mainly to
negative, neutral and positive user-topic opinions. Then the final
opinion of each user on a specific topic is computed by averaging
the opinion labels of all his/her posted messages on this topic.

One factor we need to consider is whether we should require
both users in a potential pair to connect with each other. On Twitter,
mutual connections presumably indicate closer relationships, while
one-way connections may correspond to a desire to pay attention
(e.g., to a famous singer), rather than necessarily personal relation-
ships. Existing studies [23] have shown that attention effects may
be more important than homophily effects with respect to shared
opinions in social networks. Therefore, we consider two possibil-
ities when we define that a connection (edge) between a pair of
users exists.

• Directed follow network: user ui follows user uj (uj may or
may not follow ui in return).
• Mutual follow network: user ui follows user uj , and uj fol-
lows ui at the same time.

3 FEATURE EXTRACTION FOR USERS
In this section, we extract features for both silent and active users
based on text content data and follower/followee network structure.

3.1 Inferring User-User Relations
Existing work [4] has found that there are two types of user-user re-
lations in online social networks: observed relationships (or explicit
relationships) and pseudo-relationships. Observed relationships
can be reflected by the follower/followee network structure, and
provide information on personal relationships among users. Pseudo-
relationships are extracted from sentimental text content, where
a connection between a pair of users is created if they hold con-
sistent opinions on different topics. Since the inference of silent
users’ opinions is largely dependent on user-user relations, it is
not a trivial matter to infer pseudo-relationships among users and
consider both observed and pseudo relationships when inferring
silent users’ opinions.

Intuitively, a pseudo-friend relationship between a pair of users
is likely to exist when they share the same opinions on many topics.
In contrast, a pseudo-foe relationship between two users may exist
if they have conflicting opinions. To infer the pseudo-relationship
between two users, we first introduce the meta path, which is used
to capture a sequence of relations defined between users [21]. For
example, two users ui and uj are connected via the path “user-
message-topic-message-user” (i.e., U-M-T-M-U) if both ui and uj
have posted at least one message about a same topic T . Given a
meta path (e.g., P=U-M-T-M-U), the similarity between ui and uj
is computed as follows:

sim(ui ,uj ) =
2
∑
mk ∈Mui ,ml ∈Muj

(1(pui⇝uj ∈P)
· Sc (mk ,ml ))

|{pui⇝ui ∈ P}| + |{puj⇝uj ∈ P}|

(1)
whereMui denotes the set of messages published by user ui , and
pui⇝uj represents a path instance between ui and uj that follows
the defined meta path P. Sc (mk ,ml ) is calculated as:

Sc (mk ,ml ) =



+1 if sl (mk ) = sl (ml )

−1 otherwise
(2)

where sl (mk ) is the opinion label of messagemk .
From the definition of sim(ui ,uj ), we can find that it is a real

value ranging between −1 and 1. A score sim(ui ,uj ) close to 1
indicates that users ui and uj hold similar opinions with respect
to different topics, and we denote them as pseudo-friends. On the
contrary, two users with a score sim(ui ,uj ) close to −1 indicates
that they are pseudo-foes who hold conflicting opinions on many
topics. Moreover, a score close to 0 indicates that these two users
share both consistent and conflicting opinions. In this paper, we
define a pseudo-connection between users ui and uj exists if their
sim(ui ,uj ) is larger than a threshold γ .

3.2 Clustering Users into Communities
We need to cluster users into communities, and extract a user’s
features based on the text content posted by the users in the same
community and community structure information. Therefore, in
this subsection, we shift our focus to how to cluster users into
communities.

A lot of community detection algorithms have been proposed
in order to group the users of a network into groups of users with
denser connections internally and sparser connections between
groups [15, 28, 29]. With user-user relations (including observed
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relationships and pseudo-relationships) in place, we employ the
method proposed in [25], which can achieve the best performance
of community detection on large social networks currently as far
as we know, to cluster both silent and active users. This method
unifies several commonly used clustering quality functions includ-
ing modularity, cluster deletion, and sparsest cut, and places all
these clustering quality functions within a unified optimization
framework.

3.3 Features for Opinion Inference
In this subsection, we extract three sets of features for both silent
and active users.

Content Features: Content features are used to describe the
interested topics of users and the distribution of their opinions. As
silent users publish very few messages, we cannot directly extract
content features for them from their posted text content. To solve
this problem, for each user, we consider the messages posted by
both himself/herself and other users in the same community when
extracting content features for him/her. For user u, his/her content
feature vector is represented as:

f Cu = (< tp1, s1 >, < tp2, s2 >, ..., < tpN , sN >) (3)

where N is the total number of topics we consider, tpi (1 ≤ i ≤ N )
equals to 1 if user u has posted messages about the i-th topic, and 0
otherwise. As mentioned before, we define the opinion of a user
on a particular topic as the average opinion labels of all his/her
published messages on this topic if he/she has posted messages on
this topic. Here, we set si as user u’s opinion on the i-th topic if
u has posted messages on this topic, the average opinion of other
users in the same community on the i-th topic ifu has not but other
users in the same community have posted messages on this topic,
and the average opinion of all users in our dataset on this topic
otherwise.

Intra-Community Structural Features: To extract intra-community
structural features for each user, we consider the user-user relations
among the whole users in the same community. For user u who
resides in community C , we compute his/her degree, the average
distance between u and all other users inC , the number of shortest
paths between any two users inC that pass through u, and the Katz
centrality [1], which is calculated as:

CKatz (u) =
∞∑
k=1

|C |∑
v=1

αk (Ak )u,v (4)

where α is an attenuation factor between 0 and 1, and matrix A is
the adjacency matrix, i.e., au,v = 1 if user u is connected with user
v , and au,v = 0 otherwise.

Inter-Community Structural Features: For each user, we em-
ploy inter-community structural features to indicate which commu-
nity he/she is located in and the connections between the user and
users in other communities. Given a set of users, if these users are
clustered into K communities by the aforementioned community
detection algorithm, the inter-community structural feature vector
for user u can be represented as:

f Interu = (s1, s2, ..., sK ) (5)

where si (1 ≤ i ≤ K ) ∈ {−1, 0, 1}. si equals to 0 if user u is located
in the i-th community, 1 if u is connected with any user in the i-th
community, and −1 otherwise.

4 INFERRING SILENT USERS’ OPINIONS
In this section, we introduce how to utilize various kinds of features,
and design a matrix factorization based framework to infer the
opinions of silent users.

4.1 Data Modelling
We can extract various kinds of information from text content and
user-user relation data. Here we build several matrices to capture
features extracted from different sources and the relations among
them.

Features of a user: For each user, we extract content features
f C , intra-community structural features f Intra and inter-community
structural features f Inter . Then we place f C , f Intra and f Inter

of each user into a user feature matrix Z, where each row denotes
a user and each column stands for a kind of feature.

Opinion distribution patterns: To reflect opinion distribution
patterns for individual users and communities, we extract user-
topic opinion matrix O and community-topic opinion matrix C.
Specifically, each row of matrix O denotes a topic, and each column
represents a user. Each element oi, j in O stands for the opinion
of the j-th user on the i-th topic. oi, j equals to null if the j-th
user had not posted messages on the i-th topic. Matrix O is very
sparse because silent users seldom post messages and active users
do not publish messages for all topics. To capture the community-
topic opinion information, matrix C is built. Matrix C represents
opinion distribution patterns for communities, where each row
denotes a topic and each column stands for a community. Each
community contains several users, and each element of C is the
average opinion labels of users in a particular community on a
particular topic. Compared with O, C is a higher level but denser
representation for opinion distribution patterns.

4.2 Coupled Sparse Matrix Factorization
(CSMF) Model

In this subsection, we infer the opinions on different topics for
each silent user, based on various matrices mentioned before. In the
previous subsection, we build three matrices O, C and Z. Given the
above settings, the goal of inferring the opinion of a specific user
uj on a particular topic ti can be converted into filling the missing
value in i-th row and j-th column of O with the help of C and Z.

Basically, this goal can be achieved by solely factorizing matrix
O. Specifically, a more accurate but compact representation for
users and topics in a low-rank space can be found through matrix
factorization, and matrixO can be approximated by a multiplication
of two low-rank matrices:

O ≈ T × UT (6)

where T ∈ RN×D and U ∈ RM×D are low-rank matrices with
D ≪ min(M,N ), and M and N denote the total number of users
and topics, respectively. The row vector T (i, :) in T (1 ≤ i ≤ N )
and U (j, :) in U (1 ≤ j ≤ M) are the latent representations for the
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i-th topic and j-th user, respectively. In traditional matrix factor-
ization methods, matrix O can be approximated by minimizing the
following objective function:

min
T,U
L =

1
2
| |I ◦ (O − TUT ) | |2F (7)

where | | · | |F represents the Frobenius norm of a matrix. I is an
indicator matrix with its element Ii, j equals to 0 if oi, j is null, 1
otherwise. The operator “◦” denotes the entry-wise product (i.e.,
Hadamard product).

Note that in our case, the user-topic opinion matrix O is quite
sparse since the observed user-topic opinions are only a small per-
cent. As a result, the approximation ofOwill be not accurate enough
if we solely factorize itself. To solve this problem, we can incorpo-
rate another two matrices C and Z to decompose these matrices
collaboratively. To be more specific, we first factorize community-
topic opinion matrix C ∈ RN×K into two low-rank latent matrices
T ∈ RN×D and G ∈ RK×D , where K is the total number of com-
munities. Since matrices O and C share the latent topic matrix T,
we can make T more accurate by jointly decomposing O and C.
Likewise, user feature matrix Z is also employed to help determine
the latent user matrix U more accurately by factorizing Z ∈ RM×L
into U ∈ RM×D and F ∈ RL×D , where L is the dimension of the
user feature vector, and O and Z share the latent user matrix U.
Since matrices C and Z are much denser than O, community-topic
opinion matrix C and user feature matrix Z can make contributions
to facilitating a more accurate factorization of O through shared
matrices T and U. That is to say, we can collaboratively decompose
O, C and Z as follows:

O ≈ T × UT ;C ≈ T × GT ;Z ≈ U × FT (8)

where O and C share latent topic factor T, and O and Z share
latent user factor U. Then we can achieve this goal by forming and
minimizing the following objective function:

min
T,U,F,G

L =
1
2
| |I ◦ (O − TUT ) | |2F +

λ1
2
| |C − TGT | |2F

+
λ2
2
| |Z − UFT | |2F

(9)

where λ1 > 0 and λ2 > 0 are used to control the loss in the ma-
trix factorization. After the factorization, we can recover matrix O
through the production of T and UT .

To further alleviate the data sparsity problem, we also take the
correlations between users into account. Let matrix S be the correla-
tion matrix of users, with each element si, j denoting the correlation
(similarity) between usersui anduj .D is a diagonal matrix with the
i-th diagonal element asdi,i =

∑M
j=1 si, j , and LS = (D−S) ∈ RM×M

is the Laplacian matrix of the user correlation graph. Here, we use
Pearson correlation analysis method [20] to obtain user correlation
matrix S and the corresponding Laplacian matrix LS. Then the cor-
relation information between users is considered as the trace of
matrix UT LSU, and can be obtained through the following deduc-
tion, which can guarantee that for two users ui and uj with higher
correlation (i.e., the value of si, j is large), they will be also closer in

distance between the row vectorsU (i, :) andU (j, :) in the matrix U.

1
2

∑
i, j

si, j | |U (i, :) −U (j, :) | |2F =
1
2

∑
i, j

D∑
k=1

si, j (U (i,k ) −U (j,k ))2

=
∑
i, j

D∑
k=1

si, jU
2 (i,k ) −

∑
i, j

D∑
k=1

si, jU (i,k )U (j,k )

=

D∑
k=1

UT (:,k ) (D − S)U (:,k ) = tr (UT (D − S)U)

= tr (UT LSU)
(10)

where tr (·) represents the matrix trace. In this way, user correlation
matrix S contributes to a more accurate U.

After all components mentioned are combined, the final objec-
tive function of the coupled sparse matrix factorization model is
formally defined as:

min
T,U,F,G

L =
1
2
| |I ◦ (O − TUT ) | |2F︸                 ︷︷                 ︸
user-topic factorization

+
λ1
2

| |C − TGT | |2F︸          ︷︷          ︸
community-topic factorization

+
λ2
2

| |Z − UFT | |2F︸          ︷︷          ︸
user feature factorization

+
λ3
2

tr (UT LSU)︸       ︷︷       ︸
user correlation

+
λ4
2

( | |T| |2,1 + | |U| |2,1 + | |G| |2,1 + | |F| |2,1)︸                                            ︷︷                                            ︸
row-wise sparsity regularization

(11)
Finally, we can utilize the factorized matrices T and U to recon-

struct O to Õ, namely Õ = T × UT . For a silent user uj , his/her
opinion on topic ti is the value in i-th row and j-th column of Õ. In
the objective function, the last term is a regularization of penalty to
prevent overfitting, where the ℓ2,1-norm regularization is added on
each latent matrix. The features we extract contain different types
of knowledge, and we assume that only parts of them are useful for
opinion inference. The ℓ2,1-norm can promote row-wise sparsity
of the target matrix, making it suitable for feature selection. Hence,
the last term can also help control group feature selection.

5 OPTIMIZATION ALGORITHM
The objective function we defined in the previous section is not
jointly convex to all the variables. As a result, it is not easy for
us to obtain a closed-form solution for minimizing this objective
function. To solve this problem, we utilize an iterative algorithm,
where we alternatively update one variable while fix other variables
until convergence. Note that ℓ2,1-norm is not continuous on the
origin. Hence, we cannot minimize the compound ℓ2,1 objective
function directly. Motivated by recent studies on half-quadratic
minimization approaches [27], we can first introduce an auxiliary
variable, and then apply this auxiliary variable to transform the
ℓ2,1-norm term of the objective function into an approximate form.
For instance, G can be transformed as:

| |G| |2,1 ≈ tr (GTQGG) (12)

where QG is a diagonal matrix with the i-th diagonal element as
q
д
i,i =

1
2 | |gi | |2 . T, U and F can be dealt with in the same way.
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After having the above transformations, we then compute the
derivative of the objective function with respect to T, U, G and F
respectively:

∂L

∂T
= [I ◦ (TUT − O)]U + λ1 (TGT − C)G + λ4QTT

∂L

∂U
= [I ◦ (TUT − O)]T T + λ2 (UFT − Z)F

+ λ3LSU + λ4QUU
∂L

∂G
= λ1[TGT − C]T T + λ4QGG

∂L

∂F
= λ2[UFT − Z]TU + λ4QFF

(13)

With the derivatives in place, a conjugate gradient method can be
employed to iteratively minimize the objective function. We show
the detailed process of the optimization algorithm in Algorithm 1.

Algorithm 1 Algorithm to minimize the objective function
Input: User-topic opinion matrix O, community-topic opinion

matrix C, user feature matrix Z, Laplacian matrix LS and regu-
larization parameters.

Output: T and U.
1: Initialize T, U, G and F randomly.
2: Compute the diagonal matrices QT, QU, QG and QF.
3: repeat
4: Update T, U, G and F according to Eq. (13) by using the

conjugate gradient method.
5: UpdateQT,QU,QG andQF withqti,i =

1
2 | |ti | |2 ,q

u
i,i =

1
2 | |ui | |2 ,

q
д
i,i =

1
2 | |gi | |2 , q

f
i,i =

1
2 | |fi | |2 .

6: until convergence

6 EXPERIMENTS
6.1 Evaluation Metrics
We employ two popular metrics, i.e., root mean square error (RMSE)
and Accuracy, to measure the performance of opinion inference
task. The metric RMSE is defined as:

RMSE =

√
1
NT

∑
i, j

(oi, j − õi, j )2 (14)

where NT stands for the number of opinions for testing. Since
the value of õi, j may be not an integer which exactly equals to
−1, 0 or 1, we map the value of õi, j with the sign function before
computing the Accuracy. õi, j is mapped to −1 if õi, j ∈ (−∞,−0.5],
0 if õi, j ∈ (−0.5, 0.5), and 1 if õi, j ∈ [0.5,+∞). In experiments, a
smaller RMSE value or a higher Accuracy value indicates a better
inference performance.

6.2 Comparison with Baselines
In this subsection, we compare our CSMF model with several base-
line methods. To analyze how the performance of these methods
changes with the change of active user size, we select 30, 40, 60, 70
and 80 percent of the most active users as active users, and infer the
opinions of the remaining portions of users (silent users). For users
in the test set (silent users), all their posted messages are removed

Table 1: RMSE comparisons using different methods and
sizes of active users.

Active

users
RK MF STMF DCMF OP-SVM LoCo CSMF

30% 0.92 0.80 0.75 0.71 0.68 0.70 0.59

40% 0.88 0.76 0.71 0.67 0.66 0.65 0.56

60% 0.87 0.72 0.69 0.64 0.65 0.64 0.52

70% 0.83 0.71 0.68 0.63 0.62 0.60 0.50

80% 0.81 0.71 0.65 0.62 0.61 0.58 0.49

when extracting features for them, and their observed user-topic
opinions are regarded as ground truth data. Then we predict their
opinions using different methods. The baseline methods are listed
as follows:
• RK: Regression-Kriging is a liner combination estimator that
combines a regression of the dependent variable on auxiliary
variables with the regression residuals.
• MF: This method is the basic low-rank matrix factorization
model, as shown in Eq. (7).
• STMF: It is proposed in [17], where a matrix factorization
framework is built to predict user-topic opinions by consid-
ering users’ previous posted text content and the similarities
between different users.
• DCMF: This method [12] first learns hash codes for users
and topics from content information, and then introduces an
interaction regularization to tackle the data sparsity problem.
• OP-SVM: It is an opinion prediction model based on two
types of features (sentiment features and opinion features)
extracted from one’s historical posted messages on other
topics [7].
• LoCo: It is a matrix factorization framework designed for
cold-start recommendation systems [19]. The inference of
silent users’ opinions is intrinsically similar to cold-start
recommendation problem. Therefore, we adopt this method
as a baseline method.

In this experiment, for the methods using regularization con-
straints, we adjust the regularization parameters of them in order to
obtain their best performance. In our CSMF model, the best result
is achieved when λ1, λ2, λ3 and λ4 are set as 1, 10−1, 10−1 and 1
respectively. In addition, we only consider directed follow network
when extracting features for users, and set γ , α andK as 0.7, 0.6 and
65 respectively based on the results of pre-performed testing for
parameter tuning. We display the experimental results measured
by RMSE and Accuracy in Table 1 and Figure 1.

From Table 1 and Figure 1, we can see that all these methods can
achieve much better performance than randomly guessing (which
is 1

3 in our task). When we increase the size of active users, the
performance of these methods gets improved gradually. RK method
achieves the worst performance among all baseline methods, both
by RMSE and Accuracy. The underlying reason may be that the
relationships among different features are so complex that they can-
not be captured by a liner model. Compared with basic MF model,
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Figure 1: Accuracy comparisons using different methods
and sizes of active users.

STMF, DCMF, LoCo and CSMF can obtain significantly improved
results, indicating that the regularization constraints improve the
inference of silent users’ opinions. STMF performsmuchworse than
DCMF, OP-SVM, LoCo and CSMF, which may be caused by that
STMF relies on a large number of previous published messages per
user to compute the similarities between users while few messages
are available for each user in our dataset. For OP-SVM model, one
type of features used in the model (i.e., opinion features) cannot be
extracted when the user’s all ground truth opinions on other topics
are not available. As a result, OP-SVM model also obtains worse
result than our CSMF model. Our proposed CSMF model always
generates the best performance, and this observation demonstrates
that incorporating text content and network structural features
actually benefits the inference of silent users’ opinions.

6.3 Effect of User-User Relations
When considering the explicit relationships (i.e., the follower/followee
network structure) among users in the previous section, we de-
fine two types of connections between users, i.e., directed follow
network and mutual follow network. In addition, we infer pseudo-
relationships among users before extracting structural features for
users. Here we analyze how the performance of inferring silent
users’ opinions is affected by the type of connection and pseudo-
relationships. In this experiment, we select 60% of the whole users
as active users. The experimental results are shown in Figure 2.
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Figure 2: Effect of user-user relations on RMSE and Accu-
racy.

As we can see from Figure 2, the best performance is achieved
when both directed follow network and pseudo-friend information
are taken into consideration. For both two types of connections
between users, much better results are generated after pseudo-
relationships are combined with the explicit relationships. This

result demonstrates that the pseudo-relationships are indeed highly
correlated with shared opinions among users. Comparing the di-
rected network with the mutual network, the directed network
performs slightly better than the mutual network, indicating that
attention effects are more important than homophily effects for
shared opinions in social networks.

7 CONCLUSION
Existing studies on inferring users’ opinions basically rely on one’s
previous posted messages. As silent users do not generate sufficient
content, the performance of existing solutions will drop dramat-
ically if they are applied to infer the opinions of silent users. To
solve this problem, we model the opinion inference problem as a
matrix factorization problem, and propose a coupled sparse matrix
factorization (CSMF) model to infer the opinions of silent users. We
propose several sets of features for opinion inference from differ-
ent perspectives, and capture the complex relations among these
features through the CSMF model. Experimental results based on
real-world data from Twitter demonstrate that our model achieves
much better result than the state-of-the-art methods.
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