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ABSTRACT
With the rapid development of the Internet, millions of documents,
such as news and web pages, are generated everyday. Mining the
topics and knowledge on them has attracted a lot of interest on both
academic and industrial areas. As one of the prevalent unsupervised
data mining tools, topic models are usually explored as probabilistic
generative models for large collections of texts. Traditional proba-
bilistic topic models tend to find a closed form solution of model
parameters and approach the intractable posteriors via approxi-
mation methods, which usually lead to the inaccurate inference
of parameters and low efficiency when it comes to a quite large
volume of data. Recently, an emerging trend of neural variational
inference can overcome the above issues, which offers a scalable
and powerful deep generative framework for modeling latent topics
via neural networks. Interestingly, a common assumption for the
most neural variational topic models is that topics are independent
and irrelevant to each other. However, this assumption is unrea-
sonable in many practical scenarios. In this paper, we propose a
novel Centralized Transformation Flow to capture the correlations
among topics by reshaping topic distributions. Furthermore, we
present the Transformation Flow Lower Bound to improve the per-
formance of the proposed model. Extensive experiments on two
standard benchmark datasets have well-validated the effectiveness
of the proposed approach.

CCS CONCEPTS
• Information systems→Document topicmodels; •Comput-
ing methodologies → Natural language processing.
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1 INTRODUCTION
Nowadays, the numerous texts, such as online news and reports,
are generated by various kinds of daily web services. Mining and
organizing large number of topics and knowledge from them has
attracted much attention [2, 16, 28, 33, 35]. As one of the most preva-
lent unsupervised algorithms in data mining and natural language
processing, topic model has become such a successful technique
to discover topics from collections. The conventional topic models,
such as Latent Dirichlet Allocation (LDA) [9], offer a practical and
explainable probability generative process for modeling topics. In
the LDA, topic distribution of a document is drawn as a multino-
mial with Dirichlet prior, and document words are drawn from their
topical words distribution. Then many LDA-like probability topic
models are proposed. However, since generative process is getting
expressive as the data grows, the inference of topic models tends
to be challenging and tricky due to the complicated intractable
marginal likelihood.

Recent efforts in neural variational inference (NVI) [23] offers a
powerful auto-encoding framework to handle with large amount
of data, and it can also facilitate topic modeling. The advantage
of the NVI is that it replaces the arduous works on inference of
probabilistic models by applying flexible and powerful neural net-
works through stochastic back propagation [31]. In addition, the
NVI can be automatically applied to a new model with a simple
declarative specification of the generative process. Based on the
NVI framework, several neural variational topic models are pro-
posed, such as Neural Variational Document Model (NVDM) [23],
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Neural Variation Latent Dirichlet Allocation (NVLDA) [34], and
Gaussian Softmax Model (GSM) [22]. To reduce the computation
complexity, their topics are always modeled as isotropic Gaussian
distributions via inference network.

The covariance matrix of the isotropic Gaussian is a diagonal ma-
trix for topical representations. It means that topics are solely inde-
pendent to each other. Yet, in reality, topics in documents are usually
correlated. For instance, the topics about “hardware” are probably
related with topics about “software” and “ company". Therefore, it is
reasonable to expect the relationships among different topics can be
modeled to expand the limitations of the classical neural variational
topicmodels inwhich topics are generated by the isotropic Gaussian
distribution. Intuitively, the isotropic Gaussian topic distribution
can be replaced by a Gaussian distribution with full covariance
matrix, so that the topic correlations can be captured.

Similar challenges also exist in the field of computer vision. Sev-
eral efforts have been dedicated to solving this independent prob-
lem, such as Normalizing flow [30], Inverse auto regressive flow
[18], and Householder flow [37]. These flow-based methods map
an isotropic Gaussian samples into full covariance one by using
several invertible transformations. Among them, the most efficient
one is Householder Flow since it only involves linear transforma-
tions compared with the other flow-based methods [37]. However,
Householder flow cannot be directly applied to the topic models de-
signed for NLP tasks. Because Householder flow can only transform
single stochastic Gaussian sample into non-isotropic one, which is
obviously insufficient in computing loss function.

To tackle with the aforementioned problems, in this paper, we
first propose a Centralized Transformation Flow (CTF) to make the
inference network capable of modeling covariance matrix of latent
distribution. Based on this, we further propose a Neural Variational
Correlated Topic Model (NVCTM) that integrates the CTF with
multinomial softmax generative process. The proposed NVCTM
can enhance the capability of capturing the correlations among
topics with the assistance of the new CTF process. In particular,
inspired by involutory property of Householder matrix and linear
property of Gaussian, the proposed CTF utilizes the product of
several Householder transformations to get final transformation
matrix. Then the isotropic Gaussian samples can be transformed
into non-isotropic samples via the linear operator. Finally, the docu-
ment is reconstructed by the multinomial softmax generative model
given correlated topic vectors. Besides, to effectively infer with Cen-
tralized Transformation Flow, we also present the Transformation
Flow Lower Bound (TFLB) to regulate KL divergence term of the
objective function. The TFLB utilizes the linear property of Gauss-
ian distribution and gives the closed form KL divergence between
encoded non-isotropic Gaussian distribution and topic prior. To
evaluate the proposed methods, we conduct experiments on two
standard datasets. The experimental results indicate the effective-
ness of the correlated topic modeling via the CTF and the TFLB is
an appropriate lower bound for the inference of the NVCTM. In
summary, this paper makes following contributions:

(1) We propose the CTF for inference network, which is capable
of transforming isotropic Gaussian distribution samples into
Gaussian samples with full covariance matrix.

(2) We propose the NVCTM model, which is able to capture the
correlations among topics via the proposed CTF process.

(3) We design the new TFLB which gives an appropriate KL
divergence term of the NVCTM and is capable to effectively
facilitate the training of the NVCTM.

The rest of this paper is organized as follows. Section 2 focuses on
the related works. In Section 3, we briefly introduce the background
knowledge of neural variational topic models and Householder flow.
In Section 4, we propose our NVCTM and present its inference pro-
cess. In Section 5, we introduce the dataset, options of experiments,
evaluating metric, results and analysis. Finally, the conclusion of
this work is made in Section 6.

2 RELATEDWORKS
2.1 Correlated Topic Models
Latent Dirichlet Allocation [9] is one of themost popular approaches
to text analysis community. In LDA, the multinomial-based topic
distribution cannot model correlations between topics. To solve
this issue, a CTM [7] replaces the component-independent Dirich-
let topic prior with the full covariance Gaussian to capture the
correlations. Similarly, many approaches are continually proposed.
The Gaussian Process Topic Model (GPTM) [1] captures the cor-
relations among document collection and adds known similarities
among documents via Gaussian process. The above CTM and GPTM
models capture the topic correlations by reconstructing topic distri-
butions. Another kind of approaches, such as Gaussian-LDA [11]
and Correlated Gaussian Topic Model (CGTM) [38], leverage exter-
nal resources to model the topic correlations, such as computing
relations by embedding-based representations [24, 25]. Notably, for
most of the correlation-based topic models, Gaussian distribution is
often adopted. It means that it is flexible to model dependent distri-
butions and easy to capture correlations among topics. Traditional
topic models utilize directed probability graph to describe their
generative processes. Their training methods often adopt sampling
methods [3, 27] and variational inference [6, 15]. These training
methods requires closed form solution of deviations for updating
model parameters to approximate intractable posterior. However,
as the expressiveness and structure of generative processes grows,
the deviation of parameters tends to be tough and complicated,
which also hinders the model’s efficiency when it comes to a large
scale.

2.2 Neural Variational Topic Models
In recent years, the advances in stochastic variational inference and
neural networks brings about the idea of using neural networks for
parameter inference. Neural variational inference (NVI) approach
[23] makes variational auto- encoders (VAEs) [19] a powerful deep
generative framework for topic modeling. In VAEs, the flexible neu-
ral network is served as a estimator of the target distribution, which
eliminates those arduous and complicated mathematical deviations.
Neural variational document model (NVDM) [23] is a typical neural
variational topic model with VAEs-like architecture. The NVDM
consists of two parts: an inference network to parameterize latent
topic distributions and a multinomial softmax generative model to
reconstruct the document based on the topic vectors from latent
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topic distribution. Similarly, neural variational latent Dirichlet allo-
cation (NVLDA) [34] implements an isotropic Gaussian topic dis-
tribution under the Laplace approximation [12]. Gaussian Softmax
Model (GSM) [22] normalizes the topic representation of NVDM
to get topic proportion of each document. These neural variational
approaches share a same drawback: topic distribution is assumed to
be an isotropic Gaussian, which makes them incapable of modeling
topic correlations.

2.3 Flow-based Methods for VAEs
Recent efforts have been conducted to improve latent variable dis-
tribution for neural variational inference. For instance, the flow-
based methods such as Normalizing flow [30], which implements a
series of invertible functions to transform the original latent vari-
ables. Householder flow [37] further utilizes a series of Householder
transformation to model the orthogonal matrix and transforms an
isotropic Gaussian sample into a non-isotropic one. Additionally,
several more complicated flow-based methods, i.e., Hamiltonian
Variational Inference (HVI) [32], and linear Inverse Autoregres-
sive Flow (IAF) [18], are also proposed. Among these flow-based
methods, the Householder flow is the most efficient one that only
involves several linear transformations.

In this paper, our model overcomes the drawbacks of above
works and consider both neural variational network and corre-
lations among topics. It is noteworthy that our work introduces
neural variational correlated topic model by bringing a new concept
of centralized transformation flow and enhances the flexibility and
interpretations of topic models for text analysis.

3 PRELIMINARIES
In this section, we firstly introduce a most classical framework
of neural variational topic mdoel, Neural Variational Document
Model (NVDM). Then, we briefly introduce Householder flow. The
notations and symbols frequently used in this paper are displayed
in Table 1.

Table 1: Notations in our model.

Name Description
x Bag-of-word document vector
h(0) Latent isotropic Gaussian topic vector
k Length of CTF
h(k ) Latent non-isotropic topic vector after k length of

CTF
Hi i − th Householder matrix in Householder flow
π Output vector from MLP in Inference network
µ Mean vector of isotropic Gaussian topic distribu-

tion
Σ Diagonal covariance matrix of isotropic Gaussian

topic distribution
U Transformation matrix of CTF
V Length of vocabulary
θ Parameter set of inference network
γ Parameter set of generative model

BOW vector d

Topic 

vector h

Reconstructed BOW 

vector d`

Multinomial 

Softmax

μ

Log 

σ

Inference network

Figure 1: Schematic representation of NVDM.

3.1 Neural Variational Document Model
In traditional probability topic models, the inference of models often
requires tricky and complicated math deviations for intractable
posterior when the expressiveness of models’ generative process
grows. To fulfill efficient inference and learning in probabilistic
topic models, neural variational inference (NVI) is introduced. In
NVI, the inference of model parameters relies on neural networks
to approximate the intractable posterior and only limited deviations
of parameters are needed.

Neural Variational Document Model (NVDM) [23] is a typical
NVI topic model. The schematic representation of NVDM is dis-
played in figure 1. Each input document is encoded into an isotropic
Gaussian distribution via inference network. Then topic vectors are
drawn from the Gaussian distributions and passed into a multino-
mial softmax generative model to reconstruct the input document.
Specifically, let d indicate the bag-of-words document vector, which
is the input of inference network; π denotes the output vector of
multilayer perceptron (MLP) in inference network. The isotropic
Gaussian topic distribution N (µ,Σ) is parameterized by µ and σ .
l1 (·) and l2 (·) are two linear neural networks.

π = MLP (d)

µ = l1 (π )

logσ = l2 (π )

Σ = diaд(exp 2·l2 (π ))

(1)

For M documents in corpus and N words in each document, the
document generative process of NVDM then can be described as
follows:

(1) Topic vector h ∼ N (µ,Σ).
(2) For each word in documentwn ∼ p (wn |h). The definition of

p (wn |h) is given by Equation 2.

p (wn |h) =
exp{−hWdn − bdn }∑ |V |

j=1{hWdj + bdi }
(2)

The training objective of NVDM is to maximize the lower bound
of marginal likelihood given in Equation 3.

LNVDM = Eq [logp (d|h)] − KL[q(h|d) ∥ p (h)] (3)
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Figure 2: Schematic representation of Householder flow.

The objective function, which is also known as evidence lower
bound (ELBO), has two components, i.e., the negative reconstruc-
tion term and the KL divergence term. The reconstruction term is
mainly determined by generative model and KL divergence term
denotes the measurement between the encoded isotropic Gaussian
and its prior. The objective of training is equivalent to minimize
reconstruction loss as well as KL divergence.

3.2 Householder flow
Previous work [37] introduces Household flow to break indepen-
dent assumption in latent distributions.

Householder flow utilizes unitary and involutary properties of
Householder matrix and establishes iterative invertible linear trans-
formations tomap an isotropic Gaussian sample into a non-isotropic
one.

Intuitively, to transform an isotropic Gaussian sample into a full
covariance one, an orthogonal matrix is needed. Generally, for any
Gaussian sample h N (µ, Σ), it can be generated from a standard
Gaussian distribution via h = µ + Σ

1
2 · ϵ, ϵ ∼ N (0, I ) where µ,Σ are

parameters of Gaussian distribution. The Σ in isotropic Gaussian is a
diagonal matrix. To model an orthogonal matrix, Householder flow
can be represented as the product of k Householder transformation
[5, 36]. Therefore, according to [37], the Householder matrix Hi is
calculated as

Ht =




I − 2
π · (π )T

∥ π ∥2
, t = 1

I − 2
h(t−1) · (h(t−1) )T

∥ h(t−1) ∥2
, t ≥ 2

(4)

where h(1) is a random sample from isotropic Gaussian distribution.
Householder matrix, mathematically, refers to an unitary, Hermit-
ian and involutory matrix. Therefore, the product of Householder
matrices can be simplified in terms of those useful properties. The
vector π is the output vector of MLP in the inference network. We
can iteratively get the transformed non-isotropic Gaussian sample
via the following equation.

h(m) =




h(1) ,m = 1

Hm−1 ·h(m−1) ,m ≥ 2
(5)

The schematic representation of the iterative process of House-
holder flow is illustrated in figure 2. From figure, we can see that

Householder Flow only maps single isotropic Gaussian sample to
non-isotropic one. However, this is obviously insufficient in com-
puting reconstruction loss mentioned at Equation 1.

4 OUR MODEL
In this section, we describe the proposed Neural Variational Cor-
related Topic Model (NVCTM) in details. Generally, the structure
of NVCTM consists of two main parts, i.e., the inference network
with Centralized Transformation Flow and the multinomial softmax
generative model. Specifically, the proposed Centralized Transfor-
mation Flow in inference network first generates a distributional
transformation matrix. The transformation matrix is product of
several Householder matrices. The isotropic Gaussian samples are
then transformed into non-isotropic ones by multiplying CTF’s
transformation matrix. The multinomial softmax generative model
reconstructs the given documents from the topic vectors that are
drawn from the non-isotropic Gaussian distribution. In the follow-
ing subsections, we introduce details of the Centralized Transforma-
tion Flow and the proposed correlated topic modeling. The whole
procedure of the model is illustrated in figure 3.

4.1 Centralized Transformation Flow
To transformmultiple isotropic stochastic samples into non-isotropic
ones, a distribution-level transformation matrix is needed. There-
fore, we need to generate it.

Specifically, for each isotropic latent distribution, we choose
the mean vector µ as the input vector to generate series of House-
holder matrices like the iterative process in Householder flow. The
iteration process for Householder matrices is given by Equation 4
and Equation 6 where π = MLP (x) is used for generating initial
Householder matrix H1 andMLP (x) is the output of MLP inference
network.

vm =

{
µ ,m = 1

Hm−1 ·vm−1,m ≥ 2 (6)

For given length of flow k , the distributional transformation matrix
U can be computed via:

U =
k∏
i=1

Hi,whereHi ∈ {H1,H2,H3, · · · ,Hk }. (7)

Then we take advantage of the linear property of Gaussian. The
final non-isotropic Gaussian samples can be computed via linear
transformation mentioned in Equation 8.

h(0) ∼ N (µ, Σ)

h(k ) = h(0) · U

h(k ) ∼ N (Uµ,UΣU)

(8)

The procedure of k-th Centralized Transformation flow is de-
picted in the upper part of figure 3.

Householder flow can only transform single isotropic Gaussian
into non-isotropic one, which leads to insufficient approximating ac-
curate the intractable posterior. While in CTF, when transformation
matrix is defined, CTF is able to map multiple isotropic Gaussian
samples into the non-isotropic ones with linear transformation.
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Figure 3: Schematic representation of NVCTM. The dashed rectangle indicates the procedure of CTF. The dashed arrow is short
for the iterative process to generate h(k) .

4.2 Correlated Topic Modeling via Centralized
Transformation Flow

The isotropic Gaussian topic distribution is unable to capture the
correlation between topics. To address this issue, we propose our
NVCTM which incorporates the proposed CTF to capture the cor-
relation between topics.

In NVCTM, the proposed CTF is employed in the inference net-
work of the NVCTM to transform the isotropic Gaussian topic
distribution into a Gaussian with full covariance matrix. Then the
multinomial softmax generative model generates the documents
with the correlated topic vectors. The structure of NVCTM denotes
in figure 3. The observed bag-of-word vector d is an input of MLP
in inference network. The CTF then utilizes the output of MLP and
the mean vector of isotropic Gaussian distribution as initial values
to generate the distributional transformation matrix. The correlated
topic vectors can be computed via multiplication between isotropic
Gaussian topic vectors and transformation matrix in CTF. Finally,
the multinomial softmax generative model takes several correlated
topic vectors to reconstruct the input document vector d′. After the
employment of CTF, the topic distribution in NVCTM is a Gauss-
ian with fully covariance matrix and the topic correlations can be
captured. The objective function of NVCTM is denoted as

LNVCTM

= Eq [logp (d|h(k) )] − KL[q(h(k) |d)∥p (h)]

= Eq∈N (Uµ,UΣU)[logp (d|h(k) )] − KL[N (Uµ,UΣU) | |N (0, I)].

(9)

The negative reconstruction loss can be automatically computed via
stochastic sampling multiple samples from the latent topic space.
With the help of reparameterization trick, the whole objective func-
tion can be trained with stochastic gradient methods. Accordingly,
the proposed CTF refines the latent topic distribution, which in-
dicates that the KL divergence term needs to be modified. In the
next subsection, we will precisely describe the deviation of new KL
divergence term after applying CTF.

4.3 Inference with Centralized Transformation
Flow

After employing CTF, the model inference needs to be modified
accordingly. The conventional approach of estimating objective
functionwhen flow-basedmethods applied in VAEs usually refers to
the Flow-based Free Energy lower Bound (FELB) [30]. It is calculated
as

LF ELB = Eq [logp (d|h(k) ) +
k∑
t=1

log |det
∂ f (t )

∂h(t−1)
|]

− KL[q(h(0) |d)∥p (h(k) )],

(10)

where h(0) indicates the isotropic Gaussian sample. In Householder
flow, log |det ∂f (t )

∂h (t−1) | = logdet |Ht | equals to zero because House-

holdermatrix is a unitarymatrix. In CTF, log |det ∂f (t )

∂h (t−1) | = logdet |U|
equals to zero forU =

∏k
i=1 Hi, whereHi is the Householder matrix.

Therefore, in the NVCTM, the FELB is calculated as

LF ELB = Eq [logp (d|h(k) ) − KL[q(h(0) |d)∥p (h)]

= Eq [logp (d|h(k) )] + 0.5[n − µ2 + |Σ| + log |Σ|]

where µ and Σ are in Equation 1. p (h) is the prior, which is usually
considered as N (0, I).

However, during experiments, we observes that FELB slows
down the training of the model. Here, we present our Transfor-
mation Flow Lower Bound (TFLB) to improve the performance of
perplexity and facilitate the training process of model. The TFLB
utilizes the linear property of Gaussian and can assist get explicit
parameters of the final non-isotropic Gaussian distribution. The
linear property of Gaussian [26] can be described as follows : As-
suming that the random variable and its distribution are given by
h0 ∼ N (µ,Σ), we can transform it into latent variable h′ = U · h.
The corresponding transformed latent distribution is denoted as

h′ ∼ N (Uµ,UΣUT) (11)
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Then the KL divergence term in the objective function can be com-
puted as

KL[N (µ1,Σ1) ∥ N (µ2,Σ2)]

=
1
2
[log
|Σ2 |

|Σ1 |
− n + tr(Σ−1

2 · Σ1)

+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)],

(12)

where n is the number of dimensionality in multivariate Gaussian.
Due to the fact of unitary property of Householder matrix, the
regularization term of TFLB then can be denoted as

LT FLB

= Eq [logp (d|h(k) )] − KL[q(h(k) |d) ∥ p (h)]

= Eq [logp (d|h(k) )] −
1
2
[− log |Σ| − n+

tr (UΣUT) + (Uµ )TUµ].

(13)

At last, the pseudo code of our method, NVCTM, is depicted in
Algorithm 1.

Algorithm 1 NVCTM
Input: Document bag-of-word vector d; document collection D;

parameters set of inference network θ ; parameter set of gener-
ative model γ ; length of CTF k

Output: model parameters θ and γ
1: Remove stop words and low-frequency words and covert docu-

ment into bag-of-word vector
2: Initialize θ and γ
3: for d ∈ D do
4: Compute µ and Σ using Eq 1.
5: Generate H1,H1,H3, · · · ,Hk via Eq 4 and Eq 6.
6: Generate matrix U by Eq 7.
7: Randomly draw 20 topic vector samples h from N (µ, Σ).
8: Multiply U and h(0) to get h(k ) .
9: Compute objective function with h(k ) and KL divergence

term via Eq 13.
10: Update θ via Adam method with previously calculated ob-

jective.
11: Compute µ and Σ using Eq 1.
12: Generate H1,H1,H3, · · · ,Hk via Eq 4 and Eq 6.
13: Generate matrix U by Eq 7.
14: Randomly draw 20 topic vector samples h from N (µ, Σ).
15: Multiply U and h(0) to get h(k ) .
16: Compute objective function with h(k ) and KL divergence

term via Eq 13.
17: Update γ via Adam method with previously calculated ob-

jective.
18: end for

5 EXPERIMENTS
In this section, we first introduce the experimental settings, eval-
uate the proposed model, then analyse our proposed model with
extensive experiments.

Dataset: To evaluate our efforts, we select 20NewsGroups1 and
Reuters RCV1-v22 for experiments. 20NewsGroups is a collection of
newsgroup documents which consists of 11,314 training and 7,531
testing articles. And Reuters RCV1-v2 is a huge dataset that consists
of Reuters newswire stories with 794,414 training and 10,000 testing
cases. For data preprocessing, we remove stopwords and take the
most frequent 2, 000 words and 10, 000 words as the vocabularies.

Baseline Methods: We compare the following methods to
demonstrate the priority of the proposed method:
• LDA [9]: A classical topic model, which models the topic dis-
tribution as a multinomial distribution with Dirichlet prior.
Here, we utilize the variational inference to implement the
LDA [29].
• CTM [8]: It implements a log normal topic distribution. The
variational inference of CTM implemented by the authors3
is used for evaluation.
• NVDM [23]: The model implements a typical neural varia-
tional inference approach. The inference network of NVDM
consists of a MLP network, and the generative model of
NVDM reconstructs documents from reparameterized isotropic
Gaussian distribution. We also use author’s codes4 for eval-
uation.
• GSM [22]: This model extends NVDM by normalizing the
topic vector Gaussian sample and words distribution.
• NVLDA [34]: The model leverages the Laplace approxima-
tion for the LDA generative process. The topic distribution
of NVLDA is an isotropic Gaussian.
• NVCTM: This is the proposed method in this paper.

5.1 Settings
For all of the NVI-based methods (i.e., NVDM, GSM and the pro-
posed NVCTM), the topic vector is an average of 20 samples drawn
from the latent topic distribution. For NVDM, GSM and NVCTM,
we follow the authors’ setting where the MLP in inference network
has 256 hidden units and a hyperbolic tangent activation function.
The dropout with probability of 0.8 is applied to the output of
MLP network. The linear layers to parameterize µ and σ both have
the same amount of hidden units with the number of topics. The
training process is divided into two stages: Stage-1: optimizing the
encoder’s parameters while fixing the parameters of generative
model; Stage-2: optimizing the generative model’s parameters and
keeping the inference network unchanged, which is also called
wake-sleep algorithm [13]. The optimization method we use to
train NVDM, GSM, NVLDA and NVCTM is Adam [17] with learn-
ing rate of 1e−5. We also utilize early-stop [39] to stop training and
export topics and topic vectors for further evaluations. The training
methods of LDA and CTM are online variational inference [14] and
variational inference [8]. The hyper parameters of the LDA and the
CTM, which are initial values of topic distribution prior α , topic
word distribution prior β and number of variational EM iterations,
are determined via grid search [4] to find its optimal performance
on corpus. For the proposed NVCTM, we also carry out grid search

1http://qwone.com/jason/20Newsgroups
2http://trec.nist.gov/data/reuters/reuters.html
3https://github.com/blei-lab/ctm-c
4https://github.com/ysmiao/nvdm
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Table 2: Performance of perplexity of all the methods.

20News RCV1-v2

T 25 50 100 25 50 100

LDA 1049 1020 1016 1123 1062 1043
CTM 1011 944 896 987 972 1021

NVDM 801 832 846 694 651 628
NVLDA 1105 1073 1034 1345 1321 1378
GSM 879 850 843 643 674 768

NVCTM 715 749 945 482 491 528

to decide the length of CTF k . For experimental environment, we
run all baseline methods and proposed NVCTM on a workstation
with an eight-cores Xenon E5-2630V4 CPU and GTX TITAN XP
GPU.

5.2 Perplexity
The traditional way of evaluating topic model usually refers to the
perplexity computed on unseen documents. For language modeling,
it refers to the inverse of geometric average per-word likelihood.
The lower perplexity usually indicates the better generalization
performance. The perplexity is given by:

Perplexity = exp

−
1
D

Nd∑
n

1
Nd

logp (Xd )


(14)

We train the baseline models and the proposed NVCTM on the
training set of 20News and RCV1-v2, and compute perplexity of
the corresponding models on test set. To evaluate the performance
of the proposed model more comprehensively, we also conduct
experiments with different number of topics, i.e., T=25, 50, 100. The
performance on perplexity is displayed in Table 2. From the ta-
ble, it can be observed that the NVI models (i.e., NVDM, GSM,
NVCTM except for NVLDA) always have better perplexity than
those of traditional models (i.e., LDA and CTM). Specifically, the
proposed NVCTM approach has better performance than other
baselines in most cases. For NVDM and NVCTM, which both have
the same structure of generative model, we find that NVCTM sig-
nificantly outperforms NVDM, which indicates that the proposed
CTF approach can contribute to document modeling on perplex-
ity. Interestingly, the perplexity performance of NVCTM is better
when it comes to the smaller number of topics. This phenomenon
is probably caused by the fact that the perplexity of the documents
is increased as the complexity of covariance matrix of latent topics
increases when the topic number grows. Besides, we also observe
that for unnormalized topic vector models, such as NVDM and
NVCTM, they usually have better perplexity performance than
other normalized topic vector models. This effect may be due to
the fact that topic vector normalization makes models difficult to
optimize.

5.3 TFLB vs FELB
In the previous subsection, the results of perplexity demonstrate
the effectiveness of CTF and TFLB in topic modeling. Previously,

(a) Perplexity-epoch trend on 20News-
group.

(b) KL divergence trend on 20Newsgroup.

Figure 4: The perplexity trend and KL divergence trend of
TFLB and FELB on 20Newsgroup.

the original version of Householder flow utilizes the flow-based
energy lower bound (FELB) to compute the KL divergence term. In
this subsection, we will quantitatively evaluate our proposed TFLB
and previous FELB in topic modeling. Accordingly, we also select
perplexity as the main evaluation metric. The results are displayed
in figure 4. From the perplexity trend illustrated in figures 4(a),
we can see that NVCTM with TFLB can achieve relative lower
perplexity than that of FELB. Moreover, compared with FELB, TFLB
requires less epoch to reach the lowest perplexity, which indicates
that TFLB can facilitate the training of the model. On KL divergence
trend graph illustrated in figure 4(b), it shows that the KL divergence
of TFLB is slightly larger than that of FELB, while the model with
TFLB gets lower perplexity. This indicates that TFLB can reduce the
reconstruction loss even if the KL divergence of the model slightly
increases. The main reason might be that TFLB explicitly takes
covariance matrix to compute the gradient and this enable it to
accumulate more gradient on the inference network.

5.4 Topic Coherence
Besides the perplexity, another common method of evaluating topic
models is topic coherence. Topic coherence evaluates each topic
with given reference corpus and compute corresponding coherence
score. Here, we adopt normalized point-wise mutual information
(NPMI) topic coherence proposed by [20] to automatically evaluate
the proposed model as well as baselines. The NPMI coherence
score is shown to be close to human judgments [20], which is
why we adopt this method for evaluation. The reference corpus
of corresponding corpus is the training set of corpus. We extract
top-10 and top-5 words of each topic and compute the NPMI score
for each word set with the equation of

NPMI(N) =
N∑
j=2

j−1∑
i=1

log P (w j ,wi )
P (wi )P (w j )

− log P (wi ,w j )
. (15)

Then we take the average value of two NPMI scores as the final
topic coherence score. We use the author implemented version
script5 to automatically evaluate the baseline methods as well as
NVCTM. To fully evaluate the topic coherence, we also compute
the topic coherence score of the corresponding model on topic
number T=25, 50, 100 . The topic coherence scores achieved by our

5https://github.com/jhlau/topic_interpretability
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model and the baselines are depicted in Table 3. From the table,
we find that NVCTM slightly outperforms the baselines in most
cases. On 20News, NVCTM usually has better topic coherence
scores than those of the baseline methods when the number of
topic are 25 and 50. When the number of topic increases to 100,
the topic coherence score of NVCTM decreases to 0.158, which is
pretty close to the best performance of CTM. For RCV1-v2, NVCTM
outperforms baselines when the number of topics are 25 and 50.
Similarly, when the number of topics increases, the topic coherence
of NVCTM, NVDM and GSM tends to decrease, which indicates that
those models are effective on relative small amount of topics. For
NVDM and proposed NVCTM, which both have the same structure
of generative model, the result also indicates that proposed CTF
can improve the topic coherence score of the multinomial softmax
generative model.

5.5 Document Classification
To further evaluate the performance of the proposed method, docu-
ment classification experiments are conducted on both 20News and
RCV1-v2 datasets. To efficiently evaluate the proposed approaches
and baselines, we randomly select 11 categories of RCV1-v2, namely
RCV-115k, which consists of 114, 324 documents as training set and
1, 439 documents as test set evaluation. Similar to what is usually
done in document classification, the topic vectors of the correspond-
ing documents can be regarded as the low dimensional representa-
tion of the sparse document vectors. We then use these vectors to
train an SVM classifier [10] with multinomial kernel function and
evaluate the precision, recall and F-1 measure of the correspond-
ing methods. The topic number is set to 50 equally of all the topic
models for evaluation, in terms of the performance of document
classification, which is depicted in Table 4. the results indicate that
the proposed NVCTM method outperforms the baseline methods
on 20News and RCV-115k. Compared with NVDM, which has the
same structure generative model with NVCTM, NVCTM improves
its document classification performance on both datasets, which
shows the effectiveness of CTF in inference network. Among all
approaches, the topic vectors of NVDM, NVLDA and NVCTM are
assumed to be real-valued vectors, while the topic vectors of other
methods are normalized vectors. This indicates that real-valued
topic vectors can enhance the performance of document classifica-
tion. To further demonstrate the topic vectors of documents and
their labels, we export the topic vectors for 20News and RCV1-v2.
We then visualize them by t-SNE algorithm. The visualizations of
the topic vectors on 20News and RCV-115k are illustrated in figure
5. The dots with same color indicate they are the documents from
same category. From figure, we find that the aggregation of vectors
in RCV-115k is better than that of 20News. The better aggregation
of vectors will facilitate the performance of classification.

5.6 Visualization of Topics
To further quantitatively investigate the quality of topics and topic
correlation mined by NVCTM, we export the topic and the corre-
sponding word distributions, and visualize the topics with their
corresponding top 10words on the 20NewsGroup dataset. To clearly
make the visualization, we select 5 topics, which are considered
to have correlations by NVCTM, and then utilize t-SNE [21] for

visualization. Visualization of the topics and the topic word cor-
relation graphs is depicted in figure 6. The points with different
shapes and colors indicate different topics. The dashed circles de-
note the corresponding topic word distribution, and those circles
with the same color are recognized to be correlated by NVCTM.
We also manually annotate each topic with the corresponding la-
bel. Accordingly, they can be annotated as “comp.os.ms-windows”,
“comp.graphics”, “comp.sys.ibm.pc.hardware”, “talk.politics.guns”,
“talk.politics.mideast” from the ground truth labels of 20NewsGroup.
From figure 6, we can see that the topics of “hardware”, “windows”
and “graphics” are correlated in continuous vector space. Similarly,
another two correlated topics are “mideast” and “guns”. This veri-
fies the effectiveness of the proposed method in mining topics and
correlations.

5.7 Visualization of Topical Correlations
To further demonstrate effectiveness of proposed model, we export
and visualize the covariance matrix of latent topic distribution on
20News and RCV1-v2. Unlike traditional mean-field variational
inference or mean-field neural variational inference methods, the
proposed NVCTM is capable of modeling the full covariance matrix
of latent topic distributions. The main advantage of our model is
that, with help of proposed CTF, NVCTM is capable of modeling the
full covariance matrix rather than the diagonal one. Mathematically,
the diagonal elements of covariance matrix are usually the variance
values for corresponding dimension and non-diagonal elements are
correlation of different two dimension. Therefore, to reach clari-
fied visualization, we get the final correlation matrix by zeroing all
the diagonal elements of covariance matrix and normalizing the
matrix with rest values. The numbers of topics in NVCTM are 50
for 20News and 100 for RCV1-v2. The visualization of correlation
matrix is illustrated in figure 7. From figure 7(a), we can obviously
notice that the correlation matrix is non-diagonal. Besides, the most
values of correlation matrix are nearly zero. This phenomenon is
mainly due to the latent topic prior N (0, I), where I is a diagonal
unit matrix. On the other hand, each document in 20News is corre-
sponding to a specific class of 20News, which also demonstrates
the sparsity in topic correlation. The optimization of KL divergence
term between CTF refined distributions and prior will make them
similar to each other, which indicates that prior can also act as the
sparse regularization on correlation matrix. Besides, we also notice
that there are 3 topics with the higher correlation with other topics
(i.e., topic No.3, 8 and 12. These 3 topics are visualized with light
color which represents high correlations with other topics.). We
then export these topical word distributions and find that the words
are some common words, i.e, “who”, “are”, “etc”. The main reason
of this effect is that these common words often exists in many doc-
uments, which makes model believe that they are correlated. On
the other hand, we can still find several points with relatively large
correlation coefficients. For instance, the correlation coefficients
of 37 and 49, 40 and 49 are around 0.6 ∼ 0.8 which indicates the
correlations exist among those topics.For figure 7(b), we can see
that the number of non-zero values are larger than that of 20News.
This probably results from the fact that each documents of RCV1-v2
dataset has multiple labels, which also indicates that topics in the
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Table 3: Topic coherence on 20News and RCV1-v2 datasets.

20News RCV1-v2

The numbers of topics 25 50 100 25 50 100

LDA 0.112 0.140 0.151 0.112 0.131 0.143
CTM 0.149 0.154 0.161 0.094 0.072 0.076

NVDM 0.163 0.165 0.140 0.125 0.118 0.137
NVLDA 0.167 0.145 0.110 0.121 0.136 0.107
GSM 0.141 0.132 0.111 0.101 0.076 0.062

NVCTM 0.180 0.176 0.158 0.146 0.139 0.113

Table 4: Performance of document classification on datasets of 20News and RCV-115k. The topic number of all methods is set
to 50.

20News RCV-115k

Precision Recall F-1 measure Precision Recall F-1 measure

LDA 0.421 0.501 0.458 0.446 0.447 0.446
CTM 0.503 0.431 0.464 0.484 0.502 0.493

NVDM 0.539 0.527 0.533 0.781 0.798 0.789
NVLDA 0.451 0.471 0.461 0.501 0.503 0.502
GSM 0.347 0.346 0.347 0.432 0.419 0.425
NVCTM 0.577 0.564 0.570 0.818 0.786 0.802

(a) The visualization of topic vectors on 20News. The length of CTF k is 5 and the
number of topics is 50.

(b) The visualization of topic vectors RCV-115k.The length of CTF k is 3 and the
number of topics is 100.

Figure 5: t-SNE Visualization of averaged estimated topic vector h(k ) of each document. The points with same color indicates
that they have same class label in corresponding dataset.

document are likely to be correlated. Therefore, the topic correla-
tion matrix in RCV1-v2 are reasonable to be a non-sparse matrix.
To sum up, the above visualizations of correlation matrix further
indicate the effectiveness of proposed approach.

6 CONCLUSION
In this paper, we first propose the Neural Variational Correlated
Topic Model (NVCTM) model, which incorporates the Centralized
Transformation Flow (CTF) to capture the topic correlations. CTF
can enable the model to capture the correlations among topics as
well as to sufficiently compute the marginal likelihood. We then
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Figure 6: The t-SNE visualization of topics and topic word correlation.

(a) The visualization of Correlation matrix on 20news. (b) The visualization of Correlation matrix on RCV1.

Figure 7: Visualization of correlation on covariance matrix. The diagonal elements are zeroed and non-diagonal elements are
normalized. The deeper color indicates the smaller value.

present the Transformation Flow Lower Bound (TFLB) to regulate
the objective function. It leverages the linear property of Gaussian
distribution, which can regulate the model optimization and facil-
itates the training process of NVCTM. In order to quantitatively
verify our contributions, we conduct experiments in terms of per-
plexity, topic coherence, and document classification tasks. The
experimental results show that the proposed NVCTM approach is
effective to capture topic correlations and improve the performance
of topic modeling. Moreover, the visualization of the topics and
their correlations qualitatively verified the effectiveness of NVCTM.
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